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DESCRIPTION OF MAP UNITS

Information for the unit descriptions was compiled from the sources listed at the 
end of each description. The classification schemes we use are described in 
Dragovich and others (2002d). Contact joe.dragovich@wadnr.gov for more 
detailed information.

Quaternary Sedimentary and Volcanic Deposits

HOLOCENE NONGLACIAL DEPOSITS

	Qa, Qp	 Alluvium (Holocene)—Channel alluvial deposits include sand, 
gravel, and cobbly gravel; gray; subrounded to rounded clasts; loose, 
well stratified, and well sorted; plane-bedded sands common. Fine 
overbank deposits are mostly loose or soft to stiff, grayish brown to 
olive-gray stratified sand, silt, clay, and peat and muck deposits 
(similar to unit Qp). Stillaguamish River gravels and cobbles locally 
contain gray or reddish gray Glacier Peak dacite clasts (5–20%); 
other clasts are phyllite, slate, other metasediments, greenstone, 
granite, pegmatite, gneiss, vein quartz, schist, chert, conglomerate, 
sandstone, and siltstone. Alluvium is generally thin in the study area 
(<25 ft thick). Peat (unit Qp) is deposited primarily in alluvial settings 
and is mapped both in conspicuous abandoned channels within 
floodplains and in poorly drained upland marsh or pond areas. 
Several radiocarbon ages from sticks in peat and organic sediments 
yield ages of less than 600 yr B.P. for Stillaguamish River alluvium 
east of the study area (Dragovich and others, 2002a,b) and a 2,270 
±60 yr B.P. along the Stillaguamish River (site 4).

	 Qoa	 Older alluvium (Holocene)—Cobble gravel, sand, and gravel with 
minor silt and clay interbeds; gray; subrounded to rounded; loose, 
well stratified, and well sorted; clasts include greenstone, greenschist, 
granite, gneiss, schist, dacite, pumice, phyllite, slate, vein quartz, 
chert, quartzite, sandstone, and siltstone; separated from the modern 
Stillaguamish valley floodplain by distinct topographic scarps (~5-40 
ft high); occurs locally as a thin mantle (1-10 ft thick) on Vashon 
Stade or Everson Interstade glacial deposits exposed in valley 
bottoms and is separated from the underlying glacial deposits by a 
scoured surface. Unit Qoa postdates recessional outwash but age 
relations are ambiguous in some higher elevation localities. Some 
unit Qoa deposits have dacite clast content (10-15%) suggestive of 
reworked Glacier Peak volcanic sediments and thus may represent 
fluvial deposits stranded during incision following volcanic 
aggradation (this study, Tabor and others, 2002).

	 Qaf	 Alluvial fan deposits (Holocene)—Diamicton; massive to weakly 
stratified; largely angular to subangular, locally derived clasts; mostly 
poorly sorted debris-flow deposits, locally modified by fluvial 
processes. The distinction between units Qaf and Qls is at times 
difficult and differentiation is reliant on the distinct lobate geomorph--
ology of alluvial fan deposits. Alluvial fans occur where upland 
streams spill out onto valley floors or flat terraces.

	 Qls	 Landslide complexes (Holocene)—Diamicton with soft sand, silt, 
and (or) clay matrix; contains locally derived, angular to subangular 
clasts and may contain some rounded clasts from older Quaternary 
deposits; poorly sorted and unstratified; includes deep-seated (slump-
earthflows) and shallow (debris flows and torrents) landslides. Some 
landslides may have been initiated during removal of ice buttressing 
during late Pleistocene deglaciation or may be seismically induced 
(this study; Tabor and others, 2002).

PLEISTOCENE GLACIAL AND NONGLACIAL DEPOSITS

Deposits of the Fraser Glaciation

EVERSON INTERSTADE

	Qgoe	 Recessional outwash (Pleistocene)—Sand, gravel, and sandy cobble 
gravel with rare boulders; loose; clasts are subrounded and commonly 
polymictic; contains interlayered thin to laminated beds of sandy silt 
and silt, particularly where grading to unit Qgle; non- to well 
stratified; typically contains meter-thick, subhorizontal beds normally 
crudely defined by variations in cobble, gravel, and sand content. 
Pebble imbrication, scour, and local low-amplitude trough and other 
cross-bedding features indicate deposition in braided river and deltaic 
environments. Some deposits were isolated ice-contact deposits as 
indicated by the occurrence of rare flow and (or) ablation till lenses 
and near-ice sedimentary structures. Clast types are dominantly 
polymictic gravel with a mixed local (phyllite and greenstone) and 
Canadian to eastern (granite and high-grade metamorphic clasts) 
provenance. The unit locally contains rip-up clasts of glacial lake silt 
deposits. Gravel deposits are typically poor in Glacier Peak dacite and 
(or) pumice clasts (0–5%) (Dragovich and others, 2002a,b; J. D. 
Dragovich, Wash. Divn. of Geology and Earth Resources [DGER], 
unpub. data). Dacite boulders in the French Creek and Boulder River 
channels to the east are probably eroded from a nearby (but 
unobserved) lahar deposit overlying or interbedded with recessional 
deposits (Dragovich and others, 2003). Locally divided into:

	 Qgoge	 Gravel—Sandy gravel and cobble gravel; locally contains beds 
of fine sand to silty fine sand typically 1 to 5 ft thick; loose; 
subangular to subrounded clasts with mixed local and Canadian 
provenance and minor dacite clasts (typically less than 3%); 
also includes clasts of greenstone, granite, meta-argillite, 
metasandstone, chert, sandstone, volcanic rocks, gneiss, vein 
quartz, phyllite, and rip-up clasts of lake deposits (up to 4 ft 
long); generally crudely subhorizontally stratified and 
imbricated.

	 Qgose	 Sand—Sand or pebbly sand; locally contains thin interbeds of 
silt and silty sand; loose; clasts are subangular to subrounded; 
generally structureless with some local cross-bedding. Thin-
section examination of sand indicates a distinct local clast 
component (for example, subangular serpentinite, phyllite, and 
silica-carbonate rock) mixed with far-traveled subrounded 
detritus (such as granite fragments) probably derived from the 
North Cascades and (or) the Coast Mountains of British 
Columbia. Deposits are typically fluvial but may include 
shallow deltaic deposits transitional to lake deposits.

	 Qgode	 Deltaic outwash—Sandy cobble gravel, gravelly sand, and 
sand; loose; moderately to well sorted; well stratified; 5 to 10 ft 
thick, planar foreset beds occur in sets at least 30 ft high 
dipping 10 to 31 degrees north to northeast that are overlain by 
fluvial cobble gravel topset beds (unit Qgoe) along a scoured 
contact; contains locally derived clasts such as phyllite, vein 
quartz, and greenstone mixed with clasts of Canadian prove--
nance and about 1 percent Glacier Peak dacite; locally contains 
boulder sized rip-up clasts of glaciolacustrine clay. Field 
relations and subsurface analysis indicate that deltaic outwash 
interfingers with glaciolacustrine deposits at depth (cross 
section B). However, facies relations, including fining trends, 
between deltaic deposits and glaciofluvial valley-train outwash 
(units Qgoge, Qgose, and Qgoe) and glacial lake deposits (unit 
Qgle) suggest more widespread deltaic deposits than mapped 
herein.

	Qgle	 Recessional glaciolacustrine deposits (Pleistocene)—Clay, silt, 
sandy silt, and sand with local dropstones; gray to light gray to blue-
gray; weathered to shades of brown; well sorted; loose, soft, or stiff; 
nonstratified to laminated; varve-like rhythmite beds about 0.4 in. 
thick and laminated beds of silt to sand common; locally contains 
ball-and-pillow structures; rare sand dikes; common dropstone clast 
types include granite and greenstone; deposited in glacial lakes 
impounded by receding glacial ice and locally interfingers with 
recessional outwash. Note that differentiation between advance and 
recessional glaciolacustrine geologic units (units Qglv and Qgle) is 
difficult where stratigraphic position, sediment density, and other 
criteria are ambiguous.

VASHON STADE

	Qgtv	 Till (Pleistocene)—Nonstratified, matrix-supported mixture of clay, 
silt, sand, and gravel in various proportions with disseminated 
cobbles and boulders; compact or dense; mottled dark yellowish 
brown to brownish gray, grayish blue, or very dark gray; matrix 
commonly consists of silty fine to coarse sand with or without clay; 
includes Canadian-provenance and locally derived clasts; where 
overlying bedrock, up to 90 percent of basal clasts are excavated from 
underlying bedrock; a “cemented till pavement” resulting from 
secondary magnesium carbonate precipitation is common where till 
overlies ultramafic rocks (unit Juh) along Deer Creek; generally a few 
yards thick, but it ranges from a discontinuous veneer to several tens 
of yards; forms a patchy cover over much of the study area; overlies 
bedrock in elevated alpine settings but forms a conformable layer in 
glacial-terrace and low valley-bottom settings and thus mantles 
topography (cross sections A, B, and C); consists largely of lodgment 
till but may locally include flow till.

	Qgav	 Advance outwash (Pleistocene)—Medium to coarse sand, pebbly 
sand, and sandy gravel with scattered lenses and layers of pebble-
cobble gravel; locally contains sand, silt, and clay interbeds; well 
sorted; compact or dense; clasts consist mostly of Canadian-prove--
nance rock types, some locally derived rock types, and little or no 
Glacier Peak dacite; subhorizontal bedding or cross-stratification 
prominent; contains localized cut-and-fill structures and trough and 

ripple cross-beds; commonly overlain by unit Qgtv along a sharp 
contact; interfingers with, conformably overlies, or is complexly 
interlayered with unit Qglv; composite sections of units Qgav and 
Qglv are up to 130 ft thick. Deposits are primarily fluvial, but based 
on stratigraphic relations, some are inferred to be deltaic (cross 
sections A and B). The sedimentary structures and facies arrangement 
indicate ice-impounded glaciolacustrine conditions during south--
easterly ice advance in the Deer Creek valley directly to the east 
(Dragovich and others, 2003).

	Qglv	 Advance glaciolacustrine deposits (Pleistocene)—Clay, silt, silty 
clay, and silty fine sand with local dropstones; blue gray or gray, 
weathered to pale yellowish brown; locally contains thick beds of 
structureless, clast-rich diamicton that may be flow till or iceberg 
melt-out contact zones; also locally contains lenses and beds of fine- 
to medium-grained sand; stiff or dense; well sorted. Bedding varies 
widely from structureless to thinly bedded to laminated and most 
commonly consists of 0.4 to 1.6 in. thick rhythmite beds (probable 
varves) that are normally graded from silty clay to fine sand. 
Rhythmite bedding is locally interrupted by thin to thick beds of sand 
or silty fine sand. Soft-sediment and (or) ice-shear deformational 
features include contorted bedding, overturned folds, and flame 
structures. Overturned fold geometries are consistent with east-
southeast-directed ice shear during ice advance up the major river 
valleys. This unit is typically underlain by unit Qco and locally 
overlain by and (or) interbedded with unit Qgav (cross sections A and 
B). Note that differentiation between advance and recessional 
glaciolacustrine geologic units (units Qglv and Qgle) is locally 
difficult where stratigraphic position, sediment density, and other 
criteria are ambiguous.

Deposits of the Olympia Nonglacial Interval

	 Qco	 Deposits of the Olympia nonglacial interval (Pleistocene) (cross 
sections only)—Gravel, sand, silt, clay, peat, and rare diamicton; 
compact to very compact, well-sorted, and very thinly to thickly 
bedded; disseminated organic material, logs or wood fragments are 
common (cross section A and B). Dragovich and others (2003) 
obtained ages of 35,040 ±450 yr B.P. and 38,560 ±640 yrs B.P.

Deposits of the Possession Glaciation

	 ot	 Older till (Pleistocene) (cross sections only)—Clay, silt, sand, and 
gravel in various proportions, with scattered cobbles and boulders; 
may locally include Vashon advance glaciolacustrine deposits; 
correlation with the Possession Glaciation based on stratigraphic 
thickness is tentative.

	 oo	 Older outwash (Pleistocene) (cross sections only)—Sand and (or) 
gravel; occurs directly below unit ot and may correspond to the 
Possession outwash or older pre-Possession glacial or nonglacial 
sediments.

Tertiary Intrusive, Volcanic, and Sedimentary Rocks

INTRUSIVE ROCKS

	OEiq	 Stock at Granite Lakes of Tabor and others (2002) (Oligocene– 
Eocene)—Porphyritic hornblende-clinopyroxene quartz diorite; light 
greenish gray and weathered to light olive brown; contains subhedral 
to euhedral blocky plagioclase (20-70%, 0.04 to 0.2 in.), subhedral to 
euhedral lath-shaped brown hornblende (10-15%, 0.08 to 0.3 in.), 
subhedral to anhedral biotite (0-10%, 0.04 to 0.11 in.), and anhedral 
and commonly poikilitic interstitial quartz (1-10%, 0.04 to 0.11 in.); 
hornblende is frequently corroded and partially replaced by chlorite 
or stilpnomelane, quartz, and magnetite; plagioclase exhibits both 
normal zoning (generally with labradorite cores and andesine rims) 
and oscillatory zoning; biotite occurs as an interstitial phase with 
quartz and opaque minerals and is locally altered to chlorite; other 
alteration minerals include quartz, carbonate, pumpellyite, actinolite, 
sericite, and epidote; potassium feldspar, apatite, and zircon are 
accessory minerals. The only occurrence is a dike (site 11) in the 
northeastern part of the study area. East of the study area, the unit has 
yielded K-Ar hornblende ages of 53.0 ±8 Ma, 38.5 ±7.0 Ma, and 36.7 
±4.0 Ma and a zircon fission-track age of 30.2 ±3.5 Ma (Bechtel, 
1979; Tabor and others, 2002). The pluton may be an intrusive source 
for late Eocene volcanic rocks and hypabyssal intrusive bodies (this 
study; Cruver, 1981; Jones, 1959; Reller, 1986; Dragovich and others, 
2003).

VOLCANIC ROCKS

	 Ev	 Oso volcanics of Vance (1957) (Eocene)—Nonmarine rhyolite, 
andesite, basaltic andesite, dacite, and rare basalt; mostly flows with 
interbedded pyroclastic deposits and scattered dikes; pyroclastic rocks 
include vitric crystal tuff, crystal lithic tuff, and tuff breccia; mostly 
brownish red, green, or bluish gray and weathered to olive brown; 
felsic tuffs are white, weathered to tan; plagioclase phyric locally 
with augite and (or) pigeonite phenocrysts; minor thin to thick beds of 
volcanic lithic sandstone and siltstone (including reworked tuff 
deposits); generally compositionally bimodal consisting of rhyolite 
and basaltic andesite; igneous textures vary from aphyric to locally 
porphyritic and trachyitic; flows commonly amygdaloidal; alteration 
minerals include disseminated chlorite, calcite, limonite, quartz, 
prehnite, sulfides, and epidote. Unit …Eiq may be a source for at least 
part of this unit. Sandstone is composed of angular to sub-rounded 
clasts of zoned plagioclase, clinopyroxene, quartz, and volcanic 
fragments in a fine-grained matrix containing ash shards (this study; 
Jones, 1959; Reller, 1986; Tabor and others, 2002). Rhyolite to 
andesite dikes that intrude the Chuckanut along Deer Creek (site 8) 
and elsewhere suggest that the volcanics are mostly younger than the 
Chuckanut. Also, the open folding of unit Ev compared with the tight 
folding of the Chuckanut suggests an unconformity between these 
units. Locally divided into:

	 Eva	 Andesite—Andesite with some basaltic andesite, minor 
interbedded basalt, rhyolite, and tuff, and rare volcanic lithic 
sandstone and argillite; typically occurs as dikes or thick flows 
with interbedded vitric or crystal vitric tuff; bedding generally 
obscure; andesite and basaltic andesite contain abundant 
microlites or slender grains of plagioclase (up to 40%); some 
rocks also contain blocky subhedral to euhedral plagioclase (up 
to 0.08 in.); locally contains chloritized hornblende and minor 
subhedral to euhedral interstitial to microphenocrystic quartz; 
rarely contains potassium feldspar and altered, fine-grained 
augite(?); phenocrysts and glass matrix commonly altered to 
chlorite, actinolite, epidote, carbonate, sphene, or sericite. 
Porphyritic and trachytoid (flow) textures are common, and the 
rocks locally contain carbonate or chlorite-carbonate-quartz-
filled vesicles. Tabor and others (2002) obtained a zircon 
fission-track age for the unit of 45.7 ±4.6 Ma (site 2).

SEDIMENTARY ROCKS

	OEcbcg	 Sedimentary rocks of Bulson Creek of Lovseth (1975) (Oligocene 
to Eocene)—Chert and polycrystalline quartz conglomerate with 
interbeds of pebbly sandstone and sandstone; greenish gray to 
yellowish brown and weathered to a reddish or yellowish brown; 
clasts are subangular to subrounded, moderately spherical to elongate; 
locally displays crude imbrication and subtle to distinct normal 
grading; sandstone interbeds contain angular to subrounded clasts and 
vary from structureless to thickly bedded with rare graded bedding, 
channeling, and festoon cross bedding. The unit overlies and is 
partially derived from the Eastern mélange belt (unit JŠmse). The 
unit was deposited in tectonically controlled fluvial and alluvial-fan 
settings south of the main strand of the Darrington–Devils Mountain 
fault zone (DDMFZ). Lovseth (1975) and Marcus (1981) report late 
Eocene to early Oligocene shallow-water marine fossils in the unit 
west of the map area.

	 Ech	 Mount Higgins unit of the Chuckanut Formation (Eocene)— 
Fluvial feldspathic to lithofeldspathic sandstone, siltstone, and 
mudstone with minor conglomerate, coal (anthracite), and altered tuff 
(bentonite); sandstone is various shades of bluish gray to greenish 
gray and weathered to dark gray to brown; minor minerals reported 
by Cruver (1981) include K-rectorite, illite, siderite, anatase, zircon, 
and ankerite; some black shale horizons contain siderite concretions; 
clasts are subangular to subrounded and are moderately sorted in 
sandstone and pebble conglomerate; sandstone–shale ratio is about 
2:1; structures include cross-bedding, laminated mudstone, 
symmetrical ripple marks, mudcracks, leaf litter layers, sole marks, 
and paleosols (Dragovich and others, 2003; Evans and Ristow, 1994).

	 Ecc	 Coal Mountain unit of the Chuckanut Formation (Eocene)— 
Fluvial feldspathic sandstone with conglomerate, mudstone, siltstone, 
and coal; sandstone is light gray and weathered to yellow or 
yellowish brown, is micaceous, medium to coarse grained, and 
plagioclase rich, and contains about 10 percent metamorphic lithic 
clasts (mostly phyllite); sandstone–shale ratio is about 3:1; thick to 
very thin bedded; well-sorted, rounded to subrounded clasts; trough 
cross-bedding, ripple lamination, or plane lamination common in the 
coarse-grained beds; fine-grained beds contain laminated mudstone, 
ripples, flute and load casts, and plant fossils (this study; Evans and 
Ristow, 1994; Tabor and others, 2002).

Mesozoic Low-Grade Metamorphic Rocks 
(Prehnite-Pumpellyite to Blueschist Facies)

EASTON METAMORPHIC SUITE

	Jphd, Jphdj	 Darrington Phyllite and (or) semischist of Mount Josephine 
(Jurassic)—Divided into two map units on the basis of the 
percentage of interbedded phyllite and semischist: unit Jphd (90–100 
percent Darrington Phyllite, 0–10% semischist of Mount Josephine) 
and unit Jphdj (50–90 percent Darrington Phyllite, 10–50% 
semischist of Mount Josephine).

Darrington Phyllite—Sericite-graphite-albite-quartz phyllite to 
graphitic quartz phyllite (metashale) with rare interbeds of micaceous 
quartzite (metachert), metatuff, and albite schist; phyllite is bluish 
black to black due to disseminated graphite (relict organic matter); 
silver-colored phyllites are muscovite rich; metamorphic minerals 
include albite, chlorite, epidote, clinozoisite, muscovite, lawsonite, 
and rare garnet and stilpnomelane. We locally observed large albite 
porphyroblasts and strongly foliated (S1, in places S2), conspicuously 
F2-folded and L2-crenulated structures with F2–L2 fold axes 
typically oriented subhorizontally northwest or southeast.

Semischist of Mount Josephine—Semischistose feldspathic to 
lithofeldspathic metasandstone or metawacke; rare metaconglom--
erate; greenish to light bluish gray and weathered to a light yellowish 
brown to dark gray; contains relict sand grains of polycrystalline and 
monocrystalline quartz, albitized plagioclase, and sparse lithic 
fragments. Metamorphic minerals are similar to those of the 
Darrington Phyllite (this study; Brown and others, 1987; Dragovich 
and others, 1998, 1999, 2000; Jones, 1959).

HELENA–HAYSTACK MÉLANGE

The Helena–Haystack mélange of Tabor (1994) or the Haystack terrane of 
Whetten and others (1980, 1988) is a serpentinite-matrix mélange. Blocks of 
greenstone erode out of mélange matrix as steep resistant hillocks. Regional 
greenstone geochemistry suggests a mid-oceanic-ridge to oceanic-island-arc 
origin (Dragovich and others, 1998, 1999, 2000; Tabor, 1994). U-Pb zircon ages 
obtained from meta-igneous rocks indicate a Jurassic age of about 160 to 170 
Ma (Dragovich and others, 1998, 1999, 2000; Whetten and others, 1980, 1988). 
Also, partially recrystallized radiolarians in metacherts (unit Jhmch) are 
Mesozoic, possibly Triassic (site 3; Tabor and others, 2002). Mélange formation 
is probably mid-Cretaceous or younger and may be partially Tertiary (Tabor, 
1994). Cretaceous to Tertiary faulting within the broad DDMFZ locally 
imbricates the ultramafic rocks of the Helena–Haystack mélange with Tertiary 
and other pre-Tertiary rocks (site 8, cross section C).

	Jmvh	 Greenstone (Jurassic)—Metamorphosed basalt, andesite, dacite, and 
rare rhyolite occurring as mafic to intermediate flows and inter--
mediate to felsic tuff and lapilli tuff; bluish gray to grayish green and 
weathered to dark greenish gray to light yellowish brown; flows 
locally contain amygdules, pillow breccia, and pillows; commonly 
nonfoliated but locally contains strong spaced cleavage; relict 
minerals include augite, saussuritized plagioclase, and rare 
hornblende; metamorphic minerals include albite, chlorite, acicular 
actinolite, Fe- and Mg-pumpellyite, prehnite, stilpnomelane, 
aragonite, and calcite. Pumiceous lapilli metatuff at site 16 contains 
intermediate (70%), felsic (20%), and mafic (10%) lapilli-sized 
volcanic clasts and an island-arc geochemical signature (this study; 
Dragovich and others, 2002a,b; Reller, 1986; Tabor and others, 2002).

	Jigbh	 Metagabbro (Jurassic)—Medium-grained to rarely coarse-grained 
and uralitic greenstone; light to dark greenish gray weathered to 
yellowish or grayish brown; nonfoliated to locally protomylonitic; 
also includes coarse-grained gneissic quartz diorite and metamorph--
osed diorite, pegmatitic gabbro, and diabase; relict minerals include 
saussuritized and albitized plagioclase, augite or pigeonite, brown 
actinolized hornblende, and minor interstitial quartz; ophitic or 
subophitic relict igneous textures common; metamorphic minerals 
include acicular actinolite, tremolite, epidote, chlorite, pumpellyite, 
white mica, stilpnomelane, calcite, and (or) aragonite; recrystalliza--
tion partial and typically static. K-Ar ages of 133 ±10 Ma and 164 
±24 Ma (Bechtel, 1979; site 1) are consistent with Jurassic intrusive 
U-Pb intrusive ages reported elsewhere (this study; Reller, 1986; 
Tabor and others, 2002).

	 Juh	 Ultramafite (Jurassic)—Mostly serpentinite with minor 
nonserpentinized or partially serpentinized dunite, peridotite, and 
pyroxenite (site 10) and minor metasomatic silica-carbonate rock 
(unit Juhl), rodingite, or talc-tremolite rock; serpentinite is greenish 
gray to greenish black and weathered to a dark yellowish orange and 
reddish brown; serpentinite composed of serpentine minerals locally 
with relict pyroxene and (or) olivine and accessory picotite, 
magnesite, and opaque minerals. A partially serpentinized dunite (site 
13) is composed of olivine (70%), serpentinite (25%) and opaque 
minerals (5%) (this study; Jones, 1959; Tabor and others, 2002).

	 Juhl	 Silica-carbonate rocks (Jurassic)—Silica-carbonate mineralization 
products (listwaenites) resulting from metasomatism of ultramafites; 
pods of incompletely altered serpentinite and brecciated silica-
carbonate rock locally common; brown to orange-brown weathered to 
a reddish or brownish yellow; hydrothermal minerals include 
microcrystalline quartz and magnesite in roughly equal amounts, with 
magnesite forming granular aggregates and vein swarms; magnetite, 
pyrite, and marcasite occur as accessory minerals; associated 
replacement rocks contain talc, tremolite, sphene, and chlorite; vugs 
contain colorless, euhedral quartz with overgrowths of dolomite; 
commonly displays compositionally banded veins or replacement 
bands of micro-crystalline or macrocrystalline quartz, micro-crystalline 
magnesite, fibrous chalcedony, and (or) macrocrystalline dolomite. 
Where silica-carbonate rocks and serpentinites are tectonically 
juxtaposed against the Chuckanut Formation within the DDMFZ 
(cross section C), silica-carbonate minerals locally replace the 
Chuckanut sandstone matrix. Structural relations in these areas 
suggest that the circulation of hydrothermal fluids accompanied 
deformation across the DDMFZ and may have been driven partly by 
hydrothermal circulation cells around Eocene volcanic intrusions. 
Dragovich and others (2002c) suggested that much of the silica-
carbonate mineralization was synchronous with major Tertiary 
transpression and thrusting in the DDMFZ but locally continued after 
major fault displacement (this study; Graham, 1988; Lovseth, 1975).

	Jhmch	 Heterogeneous metamorphic rocks, chert bearing (Jurassic)— 
Graphite-bearing, medium gray meta-argillite, bluish gray 
metasandstone to metawacke, and minor metachert; meta-argillite 
characterized by a strong phyllitic to slaty cleavage; metasandstone 
and meta-argillite weathered bluish gray and dark greenish gray. 
Unlike in the Easton suite, cleavage and bedding are locally 
nonparallel, quartzose metamorphic segregations are generally 
lacking, and the rocks are less recrystallized.

	Jamh	 Amphibolite (Jurassic)—Fine-grained amphibolite with well-
crystallized green hornblende and plagioclase; other metamorphic 
minerals include chlorite, epidote, and pumpellyite. Amphibolite-
facies metamorphism of this mafic metavolcanic rock occurred before 
mélange formation (Bechtel, 1979; Tabor, 1994; Tabor and others, 
2002).

ROCKS OF THE EASTERN MÉLANGE BELT OF TABOR (1994)

	JTrmte	 Mixed metavolcanic and metasedimentary rocks (Jurassic– 
Triassic)—Greenstone with volcanic subquartzose metasandstone, 
metawacke, meta-argillite, phyllitic argillite, metachert, and minor 
marble or marl pods; rocks structureless to locally moderately 
foliated; greenstone contains relict clinopyroxene (some titaniferous) 
and plagioclase in an altered matrix of chlorite, carbonate, and 
pumpellyite; prehnite common in veins; deformed pillows are rare. 
Up to 50 percent of the unit is highly sheared and disrupted 
greenstone (this study; Tabor and others, 2002).

	JTrmve	 Greenstone (Jurassic–Triassic)—Metamorphosed plagioclase- and 
augite-phyric basaltic andesite, basalt, andesite, and dacite with minor 
diabase and gabbro; dark to greenish gray or dusky green weathered 
dark greenish or bluish gray or brown; thin metasandstone, meta-
argillite and metachert interbeds occur locally; mostly thick flows 
with subordinate thinner beds of breccia or crystal-rich pyroxene-
bearing tuff; metamorphic minerals include epidote, pumpellyite, 
prehnite, and chlorite; local amygdaloidal flow tops; massive to 
incipiently foliate. The greenstone on Frailey Mountain is strongly 
fractured and locally protomylonitic as a result of low-temperature 
brittle to semiductile DDMFZ shear (this study; Dethier and others, 
1980; Tabor and others, 2002).

	JTrmse	 Metasedimentary rocks (Jurassic–Triassic)—Metamorphosed 
argillite, sandstone, wacke, siltstone with subordinate chert pebble 
conglomerate (site 9), chert, marl (site 15), and rare marble; locally 
contains tuff or greenstone layers and lenses; argillite commonly 
contains radiolaria and (or) silt-sized grains including angular quartz 
and plagioclase; sandstone commonly contains large rip-up clasts of 
argillite; other sandstone clasts include monocrystalline and 
polycrystalline quartz, chert, plagioclase, sedimentary lithic 
fragments, quartz mica tectonite, mica, and rare coral fragments; 
some metasandstones are volcanic lithic to feldspatholithic with a 
chert-rich provenance; metamorphic minerals include epidote, 
chlorite, pumpellyite, carbonate, and white mica; prehnite occurs 
typically in veins; rocks vary from massive to incipiently foliated to 

rarely strongly cleaved; overturned F1 folds and cleavage geometry in 
the chert on Frailey Mountain suggest north-northeast vergence; an 
argillaceous protomylonite-cataclasite from near the main strand of 
the DDMFZ (site 14) contains a vertical foliation and subhorizontally 
stretched clasts and provides strike-slip movement indicators (this 
study; Dethier and others, 1980; Tabor, 1994; Tabor and others, 
2002).

	JTrmce	 Metachert (Jurassic–Triassic)—Metachert locally with greenstone, 
metawacke, and meta-argillite; chert is red or black and weathered to 
a white or yellow; chert is ribboned or banded, less commonly 
occurring as thin laminae in meta-argillite; locally complexly 
disrupted, boudinaged, and folded, with veins of quartz, prehnite, and 
white mica; disseminated chlorite in mylonite zones. Deformed and 
(or) recrystallized radiolarians from chert directly east of the study 
area provide Triassic and Jurassic ages (this study; Tabor and others, 
2002).

	JTrue	 Ultramafite (Jurassic–Triassic)—Serpentinite, talc-tremolite rock, 
metaperidotite, and metaclinopyroxenite; serpentinite is light greenish 
gray to greenish black and weathers to pale green or yellowish 
orange. The serpentinite on Frailey Mountain is several tens of meters 
thick, strongly foliated, and lineated, and probably corresponds to a 
major zone of dislocation within the Eastern mélange belt (this study; 
Tabor and others, 2002).

ROCKS OF THE WESTERN MÉLANGE BELT OF TABOR (1994)

KJhmcw	Heterogeneous metamorphic rocks, chert-bearing (Cretaceous– 
Jurassic)—Semischistose metasandstone, slate, and phyllite; also 
contains greenstone derived from mafic volcanic breccia, tuff, and 
flows locally with well-developed pillows (site 12); locally abundant 
metachert and rare limestone; commonly contains pervasively 
foliated, gray to black, metamorphosed lithofeldspathic to volcanic 
lithic sandstone and semischist commonly with rip-up clasts of 
argillite; clasts include angular to subrounded plagioclase, mono--
crystalline and polycrystalline quartz, chert, volcanic lithic fragments, 
and scattered detrital mica; an aphyric basaltic greenstone with well-
developed pillows contains microphenocrystic augite and plagioclase 
in a dark green recrystallized glass matrix (site 12); locally, abundant 
cobble conglomerates are interbedded with argillite or phyllite; 
rhythmite and laminate bedding, graded bedding, and load casts 
locally well preserved; metamorphic minerals are carbonate, prehnite 
(typically in veins), pumpellyite, chlorite, epidote, and sericite; minor 
metagabbro and diabase and rare marble and ultramafic rocks found 
in the belt regionally are probably absent in the study area. Sparse 
fossils, including radiolarians in chert and megafossils in argillite, 
indicate that the belt (excluding limestone) is Late Jurassic to earliest 
Cretaceous; radiolarians in metachert at site 5 are Late Jurassic. 
Limestone blocks (olistostromes?) south of the study area are 
Permian, and a few chert blocks are Early Jurassic (Tabor and others, 
2002).

DARRINGTON–DEVILS MOUNTAIN FAULT ZONE

The Darrington–Devils Mountain fault zone (DDMFZ) divides the Northwest 
Cascades system on the north from the Eastern and Western mélange belts on 
the south (Dragovich and others, 2002d; Tabor, 1994). This broad fault zone is 
composed of numerous en-echelon segments and subsidiary faults with a 
complex displacement history beginning at latest in the Eocene (and perhaps the 
mid-Cretaceous) and continuing to recent times (Johnson and others, 2001). 
Dragovich and others (2002c) modeled the fault zone as a flower structure 
within an overall left-lateral transpressional fault regime, and we envision a 
similar deformational style for the current study area. However, the 
displacement history of the DDMFZ is complex. For example, the DDMFZ 
switched from transtensional to transpressional in the Eocene (Evans and 
Ristow, 1994) and is currently under almost pure north–south compression (Ma 
and others, 1996; Zollweg and Johnson, 1989).

Zollweg and Johnson (1989) defined the active Darrington seismic zone 
(DSZ) using a local portable seismometer array. Their hypocentral geometry 
implies that the activity occurs on a fault zone striking N80oW ±20o, dipping 
south at 40o ±15o, with a length along strike of at least 6 to 12 miles. Using best-
quality hypocentral and focal mechanism DSZ data, as well as seismic data 
obtained from the Pacific Northwest Seismic Network, we correlate recent 
seismicity with faults within the DDMFZ, including the steeply dipping main 
trace of the fault and a proposed shallowly dipping regional décollement (cross 
section C). (For locations of zones of DSZ high seismicity see sites 6 and 7 on 
the geologic map.)

Other evidence for recent seismicity and deformation along the DDMFZ 
includes: (1) probable displacement of Quaternary strata in the Oso quadrangle 
along a subsidiary fault near Deer Creek (site 8); (2) liquefaction features in 
recessional lake and outwash deposits; and (3) increased landslide density near 
the DDMFZ, suggesting landslides may be seismically induced. Additionally, 
anomalous exposures of deposits of the Olympia nonglacial interval near the 
main trace of the fault suggest uplift and erosion of Quaternary strata near the 
main trace of the DDMFZ (Dragovich and others, 2003). Holocene uplift and 
erosion are also implied by the absence of thick laharic valley fills where the 
DDMFZ crosses the Stillaguamish River despite occurrences of lahar deposits 
on both sides of the fault zone (this study; Dragovich and others, 2002a,b, 2003; 
J. D. Dragovich, DGER, unpub. data).
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possible active DDMFZ décollements (this 
study; Zollweg and Johnson, 1989)

Several clustered Darrington seismic zone earthquake hypocenters (Zollweg and Johnson, 1989; J. E. Zollweg, 
Northwest Geosensing, written commun., 2003) occur from 3.0 to 4.7 mi below sea level (below shown bar) 
directly east-southeast of the cross-section line. Focal mechanism solution data and hypocentral geometry 
suggest that the Darrington seismic zone of Zollweg and Johnson (1989) occurs on a south-dipping thrust fault 
or fault zone within the Darrington–Devils Mountain fault zone (this study; Dragovich and others, 2003).
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